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i ABSTRACT
The particle trapping phenomenon that occurs in the Whistler emission Eiq
process is more complex than the trapping by an infinite wave in a homogen- E?;
eous system. Because of the inhomogeéneous background magnetic field and the i:i
antiparallel electron and wave velocities, electrons experience trapping for if‘

; only a finite length of their orbits. Successive trapping and detrapping ';;.

:: events occur, even for an infinite wave train. A self-consistent theory for ;;:

_ the emission process requires knowledge of the orbits throughout these dif- "1
ferent phases. One must follow the electrons for many trapping periods and ﬁEf

&i accurately track the phase so that the detrapping point can be computed. ;;i

- The present report describes an asymptotic theory that allows this to be :Tf

Ei done, basically by finding an adiabatic invariant of the trapped electron ,

1: motion. The calculation is done by an asymptotic ordering which relates __;
the various small parameters in order to bring the appropriate physical pro- -
cesses into the expansion in a workable way. It then turns out that this fi:
ordering corresponds very well to the relations that occur in practice, with _m_ﬁ
the numerical value of the basic expansion parameter being about .1 . This ER
suggests that the analytic theory will have quite good accuracy and be use- ]
ful for practical applications. igii
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I. INTRODUCTION

The report describes an asymptotic orbit calculation for high energy
electrons moving along the earth's magnetic field in the presence of a
large amplitude Whistler wave. This calculation is the necessary first
step in the development of a self-consistent non-linear theory of the
triggered emission process. An adiabatic invariant for the trapped
particle motion is found from a multiple time scale analysis of the
trajectories. This allows the orbics to be followed for many trapping
periods to keep track of the phase and to compute the detrapping point.
From this an expression for the nonlinear resonant current can be written
down to, in principal, close the WKB wave equations describing the emis-
sion and propagation characteristics.

In section II, the orbit theory is developed as an asymptotic expan-
sion to bring out the main physical characteristics. The resulting order-
ing is compared with typical experimental parameters in section III. Sec-
tion IV reviews the properties of the orbital phase space, including an

evaluation of the trapped particle separatrix.
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II. ORBIT ANALYSIS
In the centered dipole approximation (see Helliwell's book Whistler o JJ-
and Related Jonospheric Phenomena, Appendix) the magnetic field strength is i
given by :Z:',:f:
3 " :
B = B°<R_o) (1 + 3 sin? 9) 1)
R

where ¢ is the geomagnetic latitude and R the geocentric radius which can

be expressed as
2
R=R 5083 ¢ (2)

o 2
co
s ¢C)

In the region of interest about the equator, i.e. for small ¢, the field can

B-B<1+s—2'> (3) ‘
(] L2

s being the arclength along the line and L being the scale length of the

be expressed as

gradient. In this field the electron equations of motion in the presence

of the Whistler field are, [1]

., %)
dt
dv A\
——!'--Qo B—V_‘_cosv-gﬂ (5)
dt B m 3s
o
v w
4fu) . = v, -2) a B cosy (6)
o
de\m B k Bo
(v,-2) W
a s k a_ sin ¥ +kv, -s+Q , (N
de Va Bo

BY stands for the wave magnetic field amplitude.
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Where the electron gyrofrequency is given by

82 eno :‘:‘::t
, Q= no 1l +~—1, Qo - — (8)
L2 m.C
e
3 av? N
the magnetic moment u is defined as " u = 9) R
B
where v, 1s the magnitude of the electronvelocity vector perpendicular to

the earthmagnetic field direction. The phase ¢ of this vector has been
replaced by the relative phase Y between v and the electric field vector

of the triggering wave:

‘l’-[ kds-]wdt+¢ . (10)

In order to arrive at this set of differential equations for the behavior
of an electron we have utilized the smallness of the gyroradius compared
to the scale length of the magnetic field.

This makes u in the absence of the wave a constant of the motion.
In the presence of the wave both u and the total particle energy will

change. Adding equations (5) and (6) gives the exact expression for the

change of total kinetic energy:

w .
14w _d /1 vf +1 vf - -v‘_-lg a B cosv (11) -
m de  de \2 2 k B, T

Rigorously speaking everything on the right-hand side of equation (11),

except for no and Bo » i8 a function of s and t . The evaluation of e

v, 1is described by equation (6) which can be written alternatively, as
dv w v,V
de k B, B 3s —

Furthermore, the phase velocity, E-, of the wave will change as a function
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of s and t and after the instability touches off BY, the wvave field, will

grow in space and time.
While these changes occur on a slow time scale the angle ¥ will

change very rapidly for most electrons. Since the propagation character-

LR A R e " e
ST T 4, L L

istics of the waves are linear (due to cold electrons) and the wavelength
' and period of oscillation are small compared to the spatial and temporal

scales of evolution, the Whistler wave can be described by a WKB or

eikonal form,

' - = 1¢,(s,¢)
E =P E(s,t)e 13

where ¥ is the polarization vector, E the wave amplitude and ¢w the wvave

i phase. The last is determined from an integration of the ray equations
-1 T
~Fap; Maoy, (16) |
T at
F Then the phase ¥ between the wave and the particles V‘_ becomes
-
t' Y= 0'(‘ot) + ¢(s,t) (15)
. wvhere the particles phase ¢ is evolving according to the equations of motion:
% (v -y v (16)
.
2 R W TLU
»- de VL Bo
>

the rate of change of ¥ is given by

ay _as M My gy

. v + ——

::;: dt dt 23s 3t dt

i V- 1 )

2 - v.k -w - Qo - gin¥Y + (17)
-

’ -6~




The homogeneous field calculation with its resonance velocity

w=-3

Vr.. = —— and Belliwell's experiments show that relevant wave phase velocities
k
%'ltl of the order of the parallel velocity of the group of electrons of inter-

est. Of course the plasma under consideration is trapped in the mirror magnetic
geometry of the earth's dipole field which lends itself to loss cone driven in-
stabilities. However, observations indicate that the medium 1is only weakly
unstable, linearly. This leads us to conclude that even though an inbalance
between v, and v, exists both can still be on the same order of magnitude.
Putting all of this together says that the first term on the right of equation

(7) will be of order 2 compared to the rest. And we can write

9 okv-w +2 + 0(2) (21)
dt

This says that for certain v, the particles will not change their phase rela-
tion with respect to the wave field. This occurs for velocities near the
resonant velocity

Nt (22)

res k

It is convenient to define a new variable

Vg =V g+ v with << 1 (23)
vll
and one can write
dv, dv s dv avte avr dv
— .i ¢ —_— v' L] + €s - —_—=
de de dt 9s it de
v v v dv
- Vres res + res +v res + — (24)
3s at 3s dt




The phenomenon of trapping is contained in equation (5) when the

L3 _ B_ 2 can become sufficiently small nesr

mn 3 n L w
the equator, s = 0 , that the wave term - no %—-v; cos ¥ dominates and
o

1nho-ogmiﬁ’ﬁl -

causes the electrons to oscillate about some stable phase at a frequency
B 172
o = (% k) (18

B
°

the so-called trapping frequency W, for well trapped particles.

We now focus attention on the trapped particles, and develop an
asymptotic ordering of parameters that permits an expansion of the electron
orbits. We will show later that this ordering accurately describes the

real parameters in the observed emission process. Re-writing L in terms

v,ed
&
of the equatorial gyroradius o = T
o
Bw 1/2
o = (ko —) (19)
B
o
Bw
one notes first that Wep is much smaller than Qo since 3 is a very small
o

number (in practice on the order of 10 5). In practice kp is order 1 and

thus should remain unordered. Then we can define a smallness parameter ¢

as
W
tr _
?2_ € (20)
[o]
Bw
indicating at the same time that o— ° €2 .,
[o]

Since Y is intrinsically an order one quantity we find for the region
of interest (%- sufficiently small so that both terms on the right-hand side
of equation (5) can compe:e) %% . ¥ . Note that for untrapped, nonres-

expansion procedure would have to be used.
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In terms of this new variable the equations of motion read B
7
ds _ L]
d_t- thS +v (25) B
o
dv Bv 1v,2 3B v v . i
— =V, — 8 cosw-_:__-vre'._&-v_zﬂ-ﬁ (26) i
dt B, 2 B 28 3s sk "
L ® P
vhere from the definition of vres —_—-— (27) s
it k Al
was used. ' 1
dv, Qy BY 1V, 3B o
—-( --—)Q — cos¥ + —— (V '+v)— (28) N
dt k/ ° B 28 ** 3s
ﬂ - kv + 0(82) . (29)
dt

For trapping to occur, we must have the inhomogeneity and wave terms in equa-
tion (26) comparable. The terms on the right-hand side of this equation scale

successively like this:

2
B vV s Qs v Q@ s 13
o
v Qo . 32 .,v' —_2 - —V.*g— ~ - —— (30)
Bo L k L v, k L k dt

~lE .

When treating a constant frequency wave train the last term can be neglect-

ed since vmm is not an explicit function of time. The proportionmalicy (30)

can be re-expressed as:

BY o s s 1 v sl

e (31)

B, LL LkL v,LkL

]

By assumption v—‘:- <<1 such that the lasc term in (31) is very small compared
\4

> to its precessor v—l ~ 1 was used again. Also using kp -1 again it is true
! A
. that £s_ sl « Then (31) demands essentially =3
LL LKL 4
s 1. .2 (32) "
.. L kL :'.4
. -9 -
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Now, we also want the s motion to be on a slower time scale than the
bouncing in the wave crests so that s is essentially forzen (adiabatically)

while trapping motion ensues. Therefore

2 .0 w, where 0 < a <1 (33)
s 5
; v 91L a
has to be determined self consistently. — scales like — > ———=-~ ¢ Wer
-] s LkLs
l14+a
or -]'—L"e (34)
kL s
From both (32) and (34) one can solve for
s CLEEJ
=" € (35)

In order to be able to treat B *-Bo on both these scales as essentially con-

2

stant we want the first correction term ( §-) to come in on the next slower
2 L

time scale (ea) . Hence

) (3) 2 (36)

Both (35) and (36) can be solved to give

1
o=l 8 (37
3 L

173 1
This completes the asymptotic ordering, using the small parameter ¢ /- (B"IBO) /6.

The fast time scale for trapped particle is w:r-l on which scale s is

-1
1/3
frozen. On this and the next slower time scale ¢ Wer , where 8 motion

occurs, the magnetic field can be treated as constant. It follows from (32)

e that

R

5/3
g - 1. (38)
L kL

e R A Y AT AT TR IR
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and since v changes as ¥ on the fast time scale u::, L
ol
v W, v WV
S 3 A 2 A I 5
av, 8 Y a v,
e (39)
vl

Thus the corrections to v =V are coming in on third order in the

res
1
expansion parameter ¢ /3, and are not needed for computing the motion along

the magnetic lines. To lowest order the equations of motion for trapped

particles become: -
ds
dt res
dv B" 1v2 3B av @ ,
— = -y, —Q cos¥ -———-~ vres X228 _ — + o(e) (41)
dt Bo 2 B 3s as k
dv, 2h
— =0+ 0(c ) (42)
de
dy 2
— = kv + 0(c ) (43)
dt

In proceeding toward a solution of this set of equations it can be

noted first that the time derivative of equation (43) becomes

2
¥ v, gk (46)

de? dt dt

. The last term in this equation scales like
N 2
vk-vvla—k~! 92(!")£s---‘592k039 (45)
sV, Q' L2 v LL

Comparing this to the left-hand side which scales like

-11 -
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2y 2 o
Ly 46) o
dtz - -
o
l__:‘
one finds ;gi
s L B2 2 (M3l
vk eu wer le € € Wiy wn )
tr v
1/3 o
that this term is a third order correction in ¢ leaving R
) =
4 s
CegEio (48) e
dé de .
Or with equation (41) o
[
d2y BY 1v2 3B v —
A res _°
—=-kv —@Q cos¥-——k—-V _k -w (49)
de? B, 28 3s as

One recognizes the first term on the right-hand side as the wave term,

P — .. .
et o
PR v o R
1ot few .- e -
e PN R

2 eos¥, and the others as inhomogeneity terms. We define an inhomogeneity

Yer

factor, S , according to, N
e . A

) ( 1v, 3B Wy ) i
w_ S® («=—=—- V_ _—--Jk - (50) b
tr 2B 3 % 3 k& e
' -

Hence, finally the ¥ -equation takes the form :Z_ ;
4_2! 2 L2 vod
4e2 + wn, cos¥ wtt S (51) -r-’
There exist bounded oscillatory solutions to this equation as long as the ]
inhomogeneity on the right-hand side satisfies :____
':\j

[s| <1 (52) o

assuming for now that the frequency stays constant.
S
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By the method of multiple time scales this equation can be solved

analytically for trapped particles. Expanding in powers of ella :

Y= Po + ,l + ?2 + ¢ 0 (53)
4.2, 2,32 ... (55)
de 2t 3t ot
Then ALY
@2y %y /0% a2y 2y [ 3% a2y P
-—2--—-—:4-53( ~+2 °)+e/ ( §+z 1 3
dt at 3t° Bcoatl 3:0 Btoatl
3%y 3y
+2 9 _+2)+... (56)
at_ac at 2 )
o 2 1
= - - -1- 2 ‘
and cosY (cos Po) (‘l’1 sin Po) (zvl cos Po -"\l'z sin Po) + .. (57)

corrections to S will come in to third order. The stable phase PB about

which the trapped particles oscillate does not change on the w ! time

tr
scale
av; aso
— 0 W —— (58)
3:0 a:o
neither does the inhomogeneity term. Thus leading order is
2 - -
w (cosPo Sy =90 S<1 (59)
yielding P =P (s(t) = cos s . (60)
to next order one finds
32y w2 sin(~P) ¥, =0 (61)
1 tr o’ 1

ac?
[}
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an oscillator equation vith oscillation frequency

w -w“v‘o:l.nz-ro) . (62)

(]

Thus '1 becomes

¥ - A(tl,cz. .« o o) sino(t.o.tl.tz, e e W) (63)
where —aL- w (64)
3, °

Since ¢ is inherently secular on the fast time scale one has to compute

%t- to requisite order prior to being able to evaluate ¢ . To find -aéf-

1
the next equation in the expansion hierarchy is needed. It reads
a2y, a2y, 32pP 2P 1
+ wg\l‘ ‘- -2 -2 2. 2 4~ ?%cosl’o
at 2 3t ot at 3. a9t 2 2
] o 1 o 2 1
+ \l'zsin Po . (65)

Our objective is to eliminate secularities of ¥, on the fast time-

a2p
Q

3t°

scale uo-l . Based on equation (58) vanishes eliminating the second

term on the right-hand side of equation (65). Also the third and fifth term

cannot drive the left-hand oscillator at f‘requency Wy - The fourth term:

i (cosPo) A% sin? (wot + .. .) = i A2 (coaPo)[l - cos(Zwot + .. 4]

2
(66)

is driving at twice the frequency Wes also dropping out of interest. It is

then left to require that

{ Yormonns

-
et
.
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a2y, 3

= — (A sin ¢) = ]
3tx3t° 361 ]
-2 (Aw ) sin ¢ + Ay kIR cosé 67 3

19| ° ° it e
1 _—k
will not drive at w  leading to a fast time scale secularity in Y, This 2
will be guaranteed under the following two conditions: f;;
a -
at, )
and 2. (69) 2

3tl
[
Therefore the combination Amo » the amplitude of trapping oscillations times

.

the frequency is constant on the slow time scale. This is a rather unexpected

constant of the motion pertaining to the slow time evaluation of the trapped
particle motion. And an additional fact is of great importance: equation (69),

which allows us to integrate ¢ as follows

¢=]dtw. Y sin[-p (s(t))] (70)

From the equations (40), (50), and (60) everything is known to compute ¢ .

Assembling these results we found an analytic description of well trapéed

electrons. 5?
¥=P +Asing (71) X
o= ] de Wy Jsin(-po) (72) 3?
With the adiabatic invariant
A w, = constant (73) :f?
-15 -
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Trom equation (43) we find that the perturbed velocity v is of constant

1itude
anp ~

v = —2 cosd
k

Summarizing these results the trapped particles are found to gyrate
in vortices in v - ¥ - space on the fast timescale u:: + Excursions in v
are of constant amplitude. The average phase angle P, is slovly changing
as the particles are drifting further along the field lines. Outside the
region of trapping |S|> 1 , the particles follow adiabatic orbits in an in-
homogensous field to leading order. For simplicity an infinite wave train

of constant amplitude wvas considered.
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III. COMPARISON WITH EXPERIMENTAL PARAMETERS

After having developed the analytic expressions for trapped electron s
orbits the question arises, how do our assumptions compare with the measure- ;?i
ments? Are the expansion parameters apt to validate the calculations? :ig

In order to check the expansion against the data given in the litera- “—f
ture our inteirest will focus on a field line designated as L = 4 . ‘

The L number is the multiple of earth radit (Ro = 6371 km) that gives :',Atjj%
the straight distance from the center of the earth to the equator of the ::;

: fleldline. ]
% Granted a dipole representation of the earth magnetic field the L = 4
- line originates at ¢ = 60° latitude on the earth's surface. This corresponds :
to a fieldline length of
s = 7—5_—53170 (si.uh'x (fi‘simo)-t-(h_-simo)m ) = ___
= 57,360 kn (74) 1
(The arc length in this form was given by Chapman and Sugiura in 1956) [2]. ,_.,
At and in the vicinity of the equator of the fieldline under coasideratidn, -—4
the magnetic field can be expressed as 1
o2 S

n-n°(1+—;) . (75) -
L | T
The scale length is given by '
TLR, ¥

Le———=12,013 m (76) e
3 : R

For the proposed comparison of scales one needs to compute the relevant plasma

parameters like Q

o * “’pe ’ \l‘r s P , etc, as well as wave parameters.

-17 -




The dipole approximation to the earth magnetic field gives an electron gyro-
frequency of £, = 13.65 kHs at an altitude of 3 earth radii above the earth's
equator [2]. This oumber compares well with the more detailed analysis by
Fougere using spherical harmonics which gives fc. = 14 kHz (3]. The corres-
pouding no = 2r fce = 88000 rad/sec. -

Typical observation are performed with the fieldstrength of the trigger-
ing signal lying in the range of 1 - 10 my {4). The commonly used unit of y
is defined by ly = 10"  Tesla = 10" > Gauss.

Hence:

\ J -3
B 5 x100% -5 .2

B, 500y

This proves to be a very good expansion parameter. It is known experimentally

that the frequency, where triggering of emission takes place most frequently, is

¢

half the wminimum gyrofrequency [5] of electrons along the fieldline Qo :

Q
w = -2 = 44000 rad/sec; £ = 7 kHz .
2

Helliwell's measurements of the "nonc"-frequcﬁcies of risers and fallers allow

to conclude on the plasma frequency [2] which he gives as

“pe = 7,6 x 10S rad/sec corresponding to

180 electron/cm3 . Now we are in the position to compute the wavelength based

on the linear dispersion relation for whistler mode signals in homogeneous

magnetized plasmas: w 2
2 2 _gg_
e-1-°‘2‘-—“’—-o (77)
w
l_ce
W

where Yoo is the electron gyrofrequency. Plugging in the numbers k turns out

to be
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ks 2.5 L corresponding

=
l to a wvave length A of approximately A = i, 2.5 km . We also take the
N k

resonance velocity on the order of the particle velocities

- h
i . Vr‘. - _k— = 17,340 < W (78)

(This is also justified by a set of model parameters in a late paper of R.A.
Helliwell and U.S. Inan (6]. From this the gyroradius p is 0.2 km, a tenth

. of the wave lenth. Then, very closely, kp appears to be an order 1 quantity.

The definition of the trapping frequency was

-2 K BY _ 500 Zad
i t P B, sec
; To within the accuracy that kp 1s 1 it will be found that “'trmo € . Here
€ is being defined by the square root of the ratio of the field strengths. ‘
i Next we are to compare the quantity f kL with —w to find an upper
bound. We can take the length Lp of the particle interaction region PIR as
' estimated by Helliwell (7]
) L p = 800 km ,

or the arc length s up to which the effect of particle trapping can be found.

I1.E. s for which the two terms on the right-hand side of the equation of motion
for v, balance. The condition is
.‘:-; s 20 v k vi
g 5| = -( °b - 2°)5 1 79)
i L Lu:r L Wip
:::' from which follows that s can range up to 1500 km .
o With Helliwell's estimate we find
A —_
N ol

iy
«"e
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8l .322x10°

L kL
\d -
which is amasingly close to 5. 1073 » verifying our assumption
Bo
s 1 B
—_—— -
L kL Bo
Further we set l_gg__ea Wep By definition~95 = vy + There follows
s dt de

a.7t-1y, .
s 9
For our purposes of finding analytic expressions for the orbits, we expand

1/3 1

hence in terms of € *10 ° To conclude this section we give a short

table of parameters relevant to the orbit calculations:

w:: = 760,000 rad/sec L =12,013 km
@ = 88,000 rad/sec A = 2.5km
w = 44,000 rad/sec k = 2,5 1/km
Wep = 200 rad/sec P = 0.2 kn
r
W
:_ . 1075 V, "V " Vg™ 17,440 km/s
[
1
6ep -3 /3 - 110
—_— = 2,2 %10
QO
B, = 500y L =4
\"
B = 1-10my Ro = 6,371 km
s -0~ 1500 km
- 20 - (.
e e, T e e e =
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Foe T T T T ——p— ~ C > —
e - N -ovL STV MR . e e T T A S L I mm——

IV. SEPARATRIX ANALYSIS

With the solutions to the equations of motion the wave-particle problem
has been solved on a microscopic level. We found that the individual electron
executes an orbit which is parametrized by two quantitites A and s. A i3 the

amplitude of trapping oscillation in ¥ and 3 the initial phase on this orbit,

as it appears in the integration of ¢ (eq.70).

Giving a pair of these parameters allows one to integrate the orbit back

or forward to the entrapping or detrapping point. These points are determined »

by the intersection of the separatrix in v - ¥ - space with the individual L

orbit. Exterior to those two points the electrons follow adiabatic orbits in ’ R
o

the geomagnetic field to lowest order. .
At exactly the equator, S = 0 , the madium appears homogeneous and the :

phase space picture is as shown in Figure 1.
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Figure 1. ‘

Trajectories of cyclotron resonant electrons in the v-¥ plane at the equator,
S=0, or for the case of a homogeneous medium. The open-ended lines correspond
to untrapped particles while the closed trajectories represent trapped particles.
The separatrix is labeled by a=1 .

Clearly the closed line orbits of trapped electrons are separated from

Yer
the open-ended lines for v greater than 2 =,

k
The equation for these orbit paths is
2,2
1k +sin ¥ = a (82)
2w
tr

Each path is labeled by a different constant of integration, a, of the first
(energy) integral on the right-hand side of equation (82). For this constant
being equal to 1 corresponds to the equation for the separatrix.

Away from the equator, the equation for the orbits is

2
_]._(k_v) = g + SY - sinY (83)

2 \wey




Bounded orbits appear for 0 < |S| < 1 . Again the choice for the constant ﬁﬁ;;%

of integration, s, specifies each trajectory. A number of them are depicted S

in Figure 2. for S = 0.5 . .
N ~"‘.':"_:
S=05 %V LI

%- O. 3"2

Figure 2.
Trajectories of cyclotron resonant electrons in the v-Y plane for $=0.5 .
The separatrix of the closed trajectories about P, for -n/2 < P, < 0 would

be parametrized by a sep =0,.342 .,

The constant of integration, a, and its functional dependence on S can
be found graphically and analytically after setting v = 0 . This corresponds
to the intersections of the contour lines with the ¥Y-axis. The intersection
values of ¥, are the solutions to the transcendental equation

a + SY = sin¥ (84)

The straight line with slope S on the left equals the sine function on the
right for several y's depending on the choice of a . This is 1llustrated by

Figure 3.
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y=SY+a,

h—
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Graphical determination of the constant of integration for the separatrix

and its width in ¥ . See text for details.

Since ¥ is the angle between v, and the electric field vector of the

wave it is sufficient to look at one interval of width 27 on the ¥ axis.

For 0 < S < 1 there will be maximally 3 intersections for small a's, two

of which define the width in ¥ of the corresponding trapped particle orbit,

the third one belongs to an open trajectory. The condition for the separa-

trix is that the open trajectory and the closed trajectory just touch. This

happens for a, where the straight line a,
(see Figure 3). The value WR where this happens is
-1

WR cos S

-2 -

. R APe e

+ SY becomes tangential to sin ¥

(85)
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vitho_s_!‘j_:lz for S > 0 . The analog holds for S < 0 . The value of

a corresponding to the separatrix is given by

a =Scoals-N-¢? (86) '

sep ]
Y
Hence, the equation for the separatrix about the trapped particle AP
-_".:';*
island centered about P , with -n/2 < P <0, 1is
2
%’(Ik'v‘) =S cos ! S -/1-5S2+SY- sin¥ (87
tr

This allows us to compute the entrapping point for nearly resonant electrons
streaming into an infinite constant amplitude triggering wave. The equation

to be evaluated is obtained by inserting

ve g mq o TG 4) (88)
(Aw )
and ¥ = 2 sin(] Wep vl - S%t)4d€> 89) °
We 1 - Sz(t)

into equation (85) and finding the root.

The_separatrix has roughly the shape of an ellipse as can be seen from
Figure 2. 1In order to find an analytic expresﬁion for its width in Y as a
function of S it is necessary to reduce the transcendental character of the
sine-function involved in equation (84).

It was found that a good approximation for sin VL is given by

4 2 12
—;-Z-‘I‘L -—;r-\vL-s-a“p-va (90)

in the interval - 31‘5 ¥, - and
2
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in the interval -v ¥ <0. The solution to either one of these equations

gives the left-hand intersect of the separatrix contour with the Y axis. The
right-hand intersect is given by equation (85). Therefore the width of the

separatrix A’aep = ?R - ?L is given by

16
—+—-s-— /s +—s+—2(1-a )

2 8 " sep
By, - cos”! S + (92)

n 2 2 16

I+ /s 85,01 (l+a )

2 8 8 * x2 \p sep

The upper expression is valid for the interval - %fgg ¥, <~ T, the lower

expression for -v < ¥, < 0 . The width in v of the separatrix Av is given by

av e 22 J5 cosd s - /182 (93)
K

So far S was treated as a positive quantity. It is straight forward to write
down the expressions for -1 < S < 0.

Belabouring the separatrix to this extent is of importance. All of the
interior are trapped particles which represent the dominant contribution to
the resonant current density. This current in turn is responsible for the
modifications of the triggering wave, the emission. The next step to be
taken is to integrate over the resonant phase space region to compute this
current. It will be to our advantage that the wave amplitude is growing on

a slower time scale than the trapping motion.

S et e e e L. cLo ot T, .
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